Foreign Material Detection and Control

FSIS Meeting Omaha, NE Sept. 24, 2002

FDC Act

- 402(a)(3)
 - "...consists in whole or in part of any filthy, putrid, or decomposed substance or is otherwise unfit for food..."
- 402(a)(4)
 - "...prepared packed or held under insanitary conditions whereby it may have become contaminated with filth, or whereby it may have been rendered injurious to health..."

GMP 110.40(a) Equipment and Utencils

• "...design construction, and use of equipment and utencils shall preclude the adulteration of food with lubricants, fuel, *metal fragments*, contaminated water, or any *other contaminants*..."

GMP 110.80(b)(8) Manufacturing Operations

"...Effective measures shall be taken to protect against the inclusion of *metal or other extraneous materials* in food. Compliance with this requirement may be accomplished by using sieves, traps, magnets, electronic metal detectors, or other suitable effective means..."

Controls Necessary

- Required to control 'adulteration'
- Specifically included in 'HACCP'physical hazards
 - Prerequisite Programs
 - CCP (?)
- Allow judgement of system integrity
- Prevent customer complaints

Control Program

- Incoming ingredients/raw materials
- Equipment protection
- After equipment which may fail or cause foreign materials
- End of system (e.g. packing, load out points)

Ingredients/Raw Materials

Preventive approach

Supplier performance measure

◆GMP 110.80(a)(4), other regulations

Down time and associated costs

Equipment Protection

- Protect expensive, sensitive equipment
- Examples: cutters, grinders, extruders, pumps, etc.
- After equipment which may generate
 - cutter blades
 - mechanical wear points
- Maintenance/cleaning activity
- Break system into measurable parts

End of Systems

Verification of overall program effectiveness

Proof' of compliance- regulatory implications

Protection against customer issues

Detection/Control Devices

Magnets

Screens/Scalping/Sifting

Metal Detectors

X-Ray Devices

Magnets

Used to remove fine metals, not horseshoes

May require several passes to retain 'paramagnetic' materials

To protect equipment, particularly in explosive atmospheres

Magnet Function

- Attraction proportionate to size
- Strength varies by inverse square of distance from surface
- Field cannot be insulated
- Can be demagnetized by abuse: extremes of heat, proximity of opposing fields, disassembly, etc.

Magnet Types

Plates

- for chutes or spouts, can be suspended
- barrier or taper steps catch small contaminants

Humps

- two or more plates in series
- for use on free-flow materials
- can catch hard to collect pieces
- can be used in gravity or pneumatic spouting with proper housing

Magnet Types

Bar

- designed for fine contaminants in shallow product streams
- product must be free-flowing

Grate

- for fine and small contaminants
- materials washed to underside of bar stream
- must be free flowing (no choke feed)
- metal must be in contact with bars

Magnet Types

Liquid traps

- group of round bars vertically installed in pipe fitting
- contaminants washed to downstream side of bars
- viscosity of material in stream affects results- may need series of traps
- available in sanitary versions
- plate liquid trap also available with fitted baffle to direct stream down onto magnet surface

Magnet Selection

- Must consider types of expected contaminants
- Must be sized to capacity of site
- Flow characteristics must be considered
- Fabrication and construction are important
- Prior planning required to select strength, assure access

Magnet Checks

- Access to magnet is Critical!
 - Up to the magnet
 - Into the magnet
 - At floor or platform level if at all possible
- Best: ability to check during operational conditions

Magnet Checks

- Heavily contaminated magnets lose separation ability
 - pulling and holding power decreased
- Expect complete cleaning and removal of any metallic materials
 - supplier performance implications
 - timing for decision making
- Understand product flow, accumulations

Magnet Program

- Determine frequency of checks
- Describe documentation of checks and findings
- Collect and evaluate ANY findings
- Documentation of evaluations and follow-up actions

Scalping/Sifting

- Sieves and screens to detect/remove materials of differing size
- May be used to detect oversized or undersized materials
- Capability dependent on differences in particle size
- Effective on dry and liquid systems

Screening/Scalping

- Requires prior planning
- Must be matched to system
 - purpose intended
 - location in the system
 - screen size and type
 - nylon
 - wire
 - plate

Screening/Scalping

- Throughputs must be taken into account
 - open area of screen
 - available footprint
- Particle sizes define separation capabilities
 - bulk density is key

Screen/Scalp Types

- Flow-through screens
 - pump liquids through screen traps
 - round hole, slots, wire sieve
- Vibratory
 - screen placed in product conveying bed
 - depth of bed and particle size affect tailings quality

Screen/Scalp Types

Sweco

- circular vibration for reduced footprint
- vigorous screen movement can increase separation rates
- may damage products

Box sifter

- gentle motion over screen surface
- usually for fine particles
- allows greater cloth surface

Screen/Scalp Types

- Turbo sifters
 - high speed rotary device within round horizontal screen assembly
 - rotary paddles throw material against the screen surface
 - may actually break-up foreign objects
- Many not considered effective as product protection devices!

Scalper Tailings

- Must maintain integrity of screen capture/tailings observations
 - covers in place
 - containers dedicated and identified
- Must be able to collect tailings
- Some screens/sifters may not 'empty'
- Screens must be checked periodically for integrity

Scalper Tailings

- Determine frequency of tailings and screen checks
- Document findings for evaluation
- Document maintenance of screens/sifting devices
- Documentation of evaluations and necessary action steps

Metal Detectors

- Use electronic field to detect metallic objects
- Detection capability
 - ferrous materials easiest
 - stainless steel hardest
 - non-ferrous metals (e.g. copper, lead, aluminum) fall in between

Detector Principles

- Balanced three coil system
 - center coil transmitter
 - two coils on either side act as receivers
 - coils identical distance from transmitter pick up the same strength of signal
 - metallic particle moving through the aperture changes signal strength
 - change is amplified and processed electronically to produce 'detection'

Sensitivity Factors

- environmental conditions
- product moisture
- salinity/pH
- temperature
- operating speed
- throughput rate
- variation in product size

- type of metal
- shape of metal
- orientation of metal
- aperature dimensions
- position of metal in aperature

Detector Spheres

The standard method of checking sensitivity

Constant shape within the aperture opening

Easily described- clarifies communication

Detector Function

Two parts to successful operations

- sensitivity achieved
- rejection of material or other operational confirmation
 - Collect rejects for evaluation
 - Use 'Fail Safe' installation

Great, but...

- Orientation effects on long contaminants
- May not be 100% effective
- Drift on sensitivity or reject device can change capability
- Operators may not know 'standards' or check procedures
- Product effect may limit sensitivity

Ball Size and Wire Size

-					
	Spherical Sensitivity (Fe Ball)	Steel Paper Clip —Dia 0.95mm (0.037")	Tinned Copper Wire Dia 0.91mm (0.036")	Copper Wire Dia 1.37mm (0.054")	Stainless Steel EN58E Dia 1.60mm (0.063")
	• 1.2 mm	1.5 mm long (0.06")	3.5 mm long (0.14")		
	•	-	_	-	_
	1.5 mm	3.0 mm long (0.12")	9.0 mm long (0.36")	3.0 mm long (0.12")	8.0 mm long (0.31")
	•	_			
	2.0 mm	6.0 mm long (0.24")	26.0 mm long (1.02")	8.0 mm long (0.31")	24.0 mm long (0.96")
	•				
	2.5 mm	11.0 mm long (0.44")	55.0 mm long (2.17")	18.0 mm long (0.72")	64.0 mm long (2.52")

Product Effects

- Dry products allow higher frequency operation- better stainless detection
- Wet products require lower frequency operation- geared to ferrous detection
- Moisture/salinity and shape may show large product effect

Ball Size and Wire Size

Safeline PowerPhase Metal Detector

at 0° Phase

Ferrous Ball Size Sensitivity	Length of 2.3mm SS Wire Worst Orientation	Length of 2.3mm SS Wire Best Orientation
2.5mm	16 mm	8 mm
3.0 mm	34 mm	17 mm
3.5 mm	74 mm	37 mm
4.0 mm	_ *	65 mm
4.5 mm	_ *	95 mm

Low Frequency Operation

^{* -} When wire length becomes longer than Metal Detector Coil Pitch it will no longer be detectable in this orientation

Size of Swarf v.s. Fe Ball Sensitivity

2.5mm Ø - S/S 316L 3.0mm Ø - S/S 316L 4.0mm Ø - S/S 316L

Detection Program

Confirm operation of checks

Confirm documentation of checks and findings

Documentation of actions taken and investigation results

X-Ray Devices

Operates on differential absorption

Absorption related to product density and thickness

Density of 'targets' and substrate affect detection/identification

X-Ray Devices

- Principle of operation
 - x-ray fan beam projected onto diode array
 - scintillator converts to visible photons
 - photodiodes register pass-through energy
 - absorption of energy measured to create 'picture'
 - electronically compared to 'standard'
 - 'reject' or signal triggered

X-Ray Devices

- Units available for linear transfer or enclosed liquid systems
- Has capability to detect some sizes of contaminants (i.e. metals, glass, maybe bone, etc.)
- Software program to interpret image is critical component

Capability

- Sensitivity determined by number of photodiodes in array
- Resolution affected by product speed through detector
- Absorption affected by density differential between 'contaminant' and substrate
- Software enables differentiation

Capability Advantages

Sees through aluminum materials

No freeze/thaw effects

Salty/wet/variable fat content- no effect

Selection Considerations

- Requires larger foot-print
- Not for drop-thru application
- Must know application- expected contaminants (density)
- Line speeds operate lower than metal detectors (up to 400fpm vs. 700fpm)
- Contaminant shape and orientation affects capability

Density Values (water=1.0)

Metallics:	Aluminum	2.7
	Bismuth	9.8
	Brass	8.5
	Bronze	8.8
	Copper	8.9
	Lead	11.3
	Stainless steel	7.9
	Mild steel	7.8
	Titanium	4.5

Density Values (water=1.0)

Non-metallic:	Bone	1.8
	Concrete	2.4
	Epoxy resin	1.1
	Crown glass	2.6
	Flint glass	4.2
	Nylon	1.15
	Polyethylene	0.94
	Polypropylene	0.90
	Rubber	0.9

Orientation Effect

- Location of object within product
 - On top easier to find
 - Buried within product more difficult
- Objects smaller than test sphere
 - If on edge- needs to be as deep
 - Flat pieces need to have necessary depth

Software Enables Capability

Dependent on each application situation

Manipulation of grayscale values allows multiple factor evaluation

Software allows analysis by programmed shapes- round, long, etc.

Foreign Material Control

- Sources within facilities are many and varied- e.g. ingredients, systems, people
- Required to assure compliance
- PREVENTION of issues is key
- Many factors determine selection
- Active documented monitoring and evaluation procedures are required

Conclusion

- Detection equipment is required
- Prior planning makes it work better
- All parts of the program must workinclude employee training
- Proper operation and documentation must be expected
- Findings require evaluations, follow-up
- Records are important